Authors
- Catherine Weaver*
- Roberto Capobianco
- Peter R. Wurman
- Peter Stone
- Masayoshi Tomizuka*
* External authors
Date
- 2024
Real-time Trajectory Generation via Dynamic Movement Primitives for Autonomous Racing
Catherine Weaver*
Peter R. Wurman
Masayoshi Tomizuka*
* External authors
2024
Abstract
We employ sequences of high-order motion primitives for efficient online trajectory planning, enabling competitive racecar control even when the car deviates from an offline demonstration. Dynamic Movement Primitives (DMPs) utilize a target-driven non-linear differential equation combined with a set of perturbing weights to model arbitrary motion. The DMP's target-driven system ensures that online trajectories can be generated from the current state, returning to the demonstration. In racing, vehicles often operate at their handling limits, making precise control of acceleration dynamics essential for gaining an advantage in turns. We introduce the Acceleration goal (Acc. goal) DMP, extending the DMP's target system to accommodate accelerating targets. When sequencing DMPs to model long trajectories, our (Acc. goal DMP explicitly models acceleration at the junctions where one DMP meets its successor in the sequence. Applicable to DMP weights learned by any method, the proposed DMP generates trajectories with less aggressive acceleration and jerk during transitions between DMPs compared to second-order DMPs. Our proposed DMP sequencing method can recover from trajectory deviations, achieve competitive lap times, and maintain stable control in autonomous vehicle racing within the high-fidelity racing game Gran Turismo Sport.
Related Publications
Recent advances in CV and NLP have been largely driven by scaling up the number of network parameters, despite traditional theories suggesting that larger networks are prone to overfitting. These large networks avoid overfitting by integrating components that induce a simpli…
Policies learned through Reinforcement Learning (RL) and ImitationLearning (IL) have demonstrated significant potential in achieving advanced performance in continuous control tasks. However, in real-world environments, itis often necessary to further customize a trained pol…
This work introduces a robotics platform which embeds a conversational AI agent in an embodied system for natural language understanding and intelligent decision-making for service tasks; integrating task planning and human-like conversation. The agent is derived from a larg…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.